OPINION: Faecal shedding of SARS-CoV-2, a snapshot of current data and implications for the water industry

There has been quite some talk about SARS-CoV-2 shedding in faeces and what that might mean for the water industry.  As I see it, there are two aspects to this conversation: the first is a concern that sewage may contain infectious SARS-CoV-2 viruses; and the second relates to the more theoretical potential of using SARS-CoV-2 RNA concentration in sewage as a public health surveillance tool.

1. Is sewage contaminated with infectious SARS-CoV-2 viruses?

While COVID-19 is primarily a respiratory illness, the possibility of faecal-oral transmission was raised quite early (Yeo et al. 2020). From the information we have to date, it appears as though many people infected will excrete SARS-CoV-2 RNA in their faeces. A snapshot of reported presence in stool samples includes:

  • Six studies reported from China: 9 out of 17 patients were positive  (Pan et al. 2020) ; 39 out of 73 patients positive (Xiao et al. 2020); 8 out of 10 children positive (Xu et al. 2020); 44 out of 153 faecal samples positive (Wang et al. 2020) ;12 out of 22 patients positive (Chen et al. 2020); 41 of 74 patients positive (Wu et al. 2020)
  • In Singapore, 4 out of 8 patients were positive (Young et al. 2020)
  • The first reported case in the United States tested positive on day 7 (Holshue et al. 2020)
  • In Germany, 8 out of 9 patients were positive (Woelfel et al. 2020)
  • In France, 2 out of 5 patients were positive (Lescure et al. 2020)

However most importantly as highlighted in the WHO technical brief, there is limited indication of infectious viruses in faeces, let alone survival to sewage effluent.  This is comforting, and yet it made me wonder: how many studies have tried to culture SARS-CoV-2 from faecal samples? Of the studies listed above, to my knowledge only 2 tried to culture the virus: Wang et al. (2020) reported successfully culturing 2 out of 4 samples, identifying the ‘live’ virus by electron microscopy.  Woelfel et al. (2020) attempted to culture 13 samples taken between days six to twelve from four patients without success.  There is a need for more information on the success and failure of culture of SARS CoV-2 in faecal samples.

2. Enumeration of SARS-CoV-2 in Sewage to Support Public Health Surveillance

As highlighted in a previous blog post , many in the water industry (including myself) see the tremendous potential to use enumeration of RNA from sewage to support public health surveillance.  If we are to do this well, we need to understand how SARS-CoV-2 is shed with the faeces of infected individuals in order to model a link between the number of infections in the community with estimated numbers in wastewater.  From the studies cited above we can deduce:

  • Not all infected people are positive for SARS-CoV-2 in their faeces. Any predictions to the community infection rate would need to correct for this.
  • The duration of shedding varies between individuals.  Of the 8 children who were persistently positive in stool samples in China, the duration varied from 5 to 28 days with a mean of 21 (Xu et al. 2020); and of the 41 who tested positive by Wu et al. (2020), the duration of positive samples varied from 1-39 days with a mean of 14 (Wu et al. 2020)
  • The magnitude of shedding varies between individuals and over the course of infection in any one person. Viral loads reported by Pan et al., 2020 ranged from 550 copies per ml to 1.21 × 105 copies per mL; and Lescure et al. (2020)  reported one patient with 6.2 – 6.8 Log10 copies per g; and the other patient 7.4 – 8.1 Log10 copies per g.   The most complete data so far appears to be from Woelfel et al. (2020) where the viral load in stool samples was plotted over the course of the infection for eight patients and reached close to 108 RNA copies per gram at its’ peak in one patient

It is clear than any attempt to model RNA concentration in sewage from shedding data will not be simple or straight forward, and will need to give appropriate consideration to the variability and uncertainty associated with these excretion patterns.  

Share your thoughts in comments.


Chen, C., Gao, G., Xu, Y., Pu, L., Wang, Q., Wang, L., Wang, W., Song, Y., Chen, M., Wang, L., Yu, F., Yang, S., Tang, Y., Zhao, L., Wang, H., Wang, Y., Zeng, H. and Zhang, F. (2020) SARS-CoV-2–Positive Sputum and Feces After Conversion of Pharyngeal Samples in Patients With COVID-19. Annals of Internal Medicine.

Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S. and Tural, A. (2020) First case of 2019 novel coronavirus in the United States. New England Journal of Medicine.

Lescure, F.-X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P.-H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F. and Le Hingrat, Q. (2020) Clinical and virological data of the first cases of COVID-19 in Europe: a case series. The Lancet Infectious Diseases.

Pan, Y., Zhang, D., Yang, P., Poon, L.L.M. and Wang, Q. (2020) Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 20(4), 411-412.

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G. and Tan, W. (2020) Detection of SARS-CoV-2 in different types of clinical specimens. JAMA.

Woelfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Mueller, M.A., Niemeyer, D., Vollmar, P., Rothe, C. and Hoelscher, M. (2020) Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster. medRxiv.

Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y. and Qu, X. (2020) Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The Lancet Gastroenterology & Hepatology.

Xiao, F., Tang, M., Zheng, X., Li, C., He, J., Hong, Z., Huang, S., Zhang, Z., Lin, X. and Fang, Z. (2020) Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv.

Xu, Y., Li, X., Zhu, B., Liang, H., Fang, C., Gong, Y., Guo, Q., Sun, X., Zhao, D. and Shen, J. (2020) Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 1-4.

Yeo, C., Kaushal, S. and Yeo, D. (2020) Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? The Lancet Gastroenterology & Hepatology 5(4), 335-337.

Young, B.E., Ong, S.W.X., Kalimuddin, S., Low, J.G., Tan, S.Y., Loh, J., Ng, O.T., Marimuthu, K., Ang, L.W., Mak, T.M., Lau, S.K., Anderson, D.E., Chan, K.S., Tan, T.Y., Ng, T.Y., Cui, L., Said, Z., Kurupatham, L., Chen, M.I., Chan, M., Vasoo, S., Wang, L.F., Tan, B.H., Lin, R.T.P., Lee, V.J.M., Leo, Y.S., Lye, D.C. and Singapore Novel Coronavirus Outbreak Research, T. (2020) Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA.

7 thoughts on “OPINION: Faecal shedding of SARS-CoV-2, a snapshot of current data and implications for the water industry

  1. Hi Susan. This paper looks similar to the Chinese CDC one that is referred to in the recent WHO update on transmission modes. I am not sure how credible their culture assay is. There are no details provided of the method, and without providing information on controls I do not understand how they have used EM to determine that the viruses are infectious / culturable. They had 29% of faecal samples positive (44 samples in total) yet only tested 4 by culture. The Woefel paper provided complete details of their assays (in the supplemental info), they monitored for CPE in the cells and confirmed it was SARS-CoV-2 by RT-PCR. They reported higher % of patients excreting virus but could not culture virus from stool, compared with culture of virus from sputum.

    Liked by 2 people

  2. Hi Susan,

    Thank you for this review of current information. I would like to add the variation of shedding between persons with milder (probably a significant proportion, and many may go unreported) and more severe symptoms (like the hospitalized patients in the Woelfel et al paper) to the equation.

    Liked by 1 person

    1. Thanks Gertjan, yes…good point. In addition, the complexity of which symptoms…given that only one of Woelfel’s patients had gastro symptoms…and they were mild.

      Liked by 1 person

  3. I think it would be interesting with time of course, to check for infectivity testing on cell cultures of viral material from stool vs viral material samples after certain degrees of wastewater treatment. There are some infographics circulating around on these platforms, where schematics are depicted with all the stages relevant to disinfection which give a good overview of the likelihood of viral material to remain viable.


  4. Reblogged this on Maximos' Blog and commented:
    I don’t usually reblog others’ work, but Stuart Khan raises an important consideration here. We exchanged a few comments via twitter. Although I don’t know him I respect his work. We need sounbd analytiucal thinkinbg as we face the COVID19 pandermic, he brings his academic skills tinto focus here with two important posts that explore what we currently know about water and sewage as a vector for reansmission


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: